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Abstract-Propagation of magneto-elastic Rayleigh waves from a unit line force in a perfectly
conducting elastic half-space in a magnetic field is considered in this paper. Green's function for
magneto-elastic Rayleigh waves is constructed by using the theory of spectral operators. A unified
self-adjoint operator for both the elastic and electromagnetic disturbances is introduced. The self­
adjointedness of the operator is then invoked to construct a solution of the inhomogeneous problem
through eigenfunction of a corresponding homogeneous problem. Energy integrals for magneto­
elastic surface waves and electro-magnetic disturbances similar to the more familiar elastic energy
integrals are derived and relationships between the energy integrals are discussed in some detail.

I. INTRODUCTION

The interaction between electromagnetic fields and deformable solids has received con­
siderable attention in recent years for possible applications in high energy devices such
as magnetically levitated vehicles (Maglev), MHD generators, fusion reactors, magnetic
launcher, superconducting magnetic energy storage (SMES), and magnetic forming devices
(Moon, 1984), Especially, the propagation of mechanical or thermo-mechanical waves
through a magnetic field has been a topic for many investigators into the detection of flaws
in ferrous and nonferrous metals. optical acoustics and geophysics. Knopolf (1955) studied
the effect of the earth's magnetic field on the propagation ofseismic waves in the conducting
core of the earth. Dunkin and Eringen (1963) studied the problem of plane waves traveling
through an infinite medium and an infinite pl..tte in the presence of large magnetostatic and
electrostatic fields. Other works on the topic include Paria (1962), Wilson (1963), Chian
and Moon (1981), Verma (1986). and Lee et al. (1990). More recently, Massalas and
Tsolakidis (1990) studied plane magneto-thermo-clastic wave propagation in a prestressed
body.

Most of the aforementioned studies, however, are concerned with the propagation of
body waves. Propagation of surface waves in elastic conductors has not received much
attention despite some potential applications in nondestructive material characterization of
advanced electromagnetic materi.tls. The only exception is probably a series of works by
Kaliski and Rogula (1960, 1961). Recently the propagation of magneto-elastic Rayleigh
waves in a perfectly conducting elastic half-space similar to the problem treated by Kaliski
and Rogula (1960) has been investigated by Lee and lts (\991. 1992) to study the influence
of the magnetic field and magnetic properties on the parameters of Rayleigh waves.

Any meaningful application of surface waves to a nondestructive measurement of the
electromagnetic and/or mechanical parameters requires investigations in the framework of
dynamics of inhomogeneous media. It is known, however, that the solution of many
inhomogeneous problems such as the problems of surface wave scattering at weak inhomo­
geneities (Snicder, 1987) or the problems of reflection and transmission at strong in­
homogeneities (Its and Yanovskaya, 1985; Its. 1991) are based on the construction of
Green's functions for homogeneous media. UnfortlulUtely, no Green's functions for coupled
magneto-clastic surface waves have been reported in the literature. Most studies on the
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coupled magneto-elastic wave propagation have invariably been concerned with homo­
geneous (i.e. source-free) problems. Therefore. discussions have been confined to the dis­
persion relations. and thus limiting the applicability of the solution to practical situations.

[n order to provide a framework for further studies on the reflection and transmission
of magneto-elastic waves in magneto-elastic media with various material inhomogeneities,
the Green's function for surface waves propagating in a perfectly conducting half-space is
constructed in this paper for the case when the half-space containing a unit mechanical
singularity is permeated by a transverse magnetic field. A unified self-adjoint operator for
both the elastic and electromagnetic disturbances is introduced. The self-adjointedness of
the operator is then invoked to construct a solution of the inhomogeneous problem through
eigenfunctions of the corresponding homogeneous problem. By analogy with the energy
integrals known for purely mechanical surface waves. magneto-elastic energy integrals for
coupled elastic and electro-magnetic disturbances are also derived and relationships between
energy integrals are discussed in some detail.

2. FUNDAMENTAL EQUATIONS AND STATEMENT OF THE PROBLEM

Consider an electrically conducting elastic half-space (- 00 < x < 00. -X) < y < 00.

o< =<Xl) in contact with a vacuum which is permeated by a magnetic field. Equations
governing the propagation of small clastic disturbances arc

V'T+p(f-ii)+J x 8 = O. (I)

where T is the stress tensor. u the mechanical displacement. p the mass density. and f is the
body force of non-magnetic origin. The last term in the above equation is the Lorentz
force due to the electromagnetic lield. The electromagnetic lidd is governed by Maxwell's
equations

v x E:::: - 8. V' R :::: O. V x f-I :::: J. (2)

where II is the magnetic licld, B the magnetic induction. E the electric lield. and J is
the current density. In the above equations, we have neglected the displacement current.
Equations (I) and (2) are supplemented by the following constitutive equations:

B = ItH, J = 11(E+u x 8).

T:::: l(trc)I+2Gc, c::::: (Vu+uV)/2,

(3)

(4)

where Il is the magnetic permeability. 11 the electric conductivity. c the clastic strain tensor,
). and G arc the Lame constants. and I is the identity tensor. Superscript dots, . and ".
denote the first nnd second dilTerentintions with respect to time. respectively. uV denotes a
transposition of the displacement gradient Vu. The boundary conditions arc

nX[E+uxR~::::O. n'[B]=O, nx[H]::::O.

n' [T+TE
] :::: 0,

(5)

(6)

where n is the unit outward normal vector. [ ] denotes the jump between the values from
the positive and negutive sides of the discontinuity surface. and Maxwell's stress tensor T E

in (6) is given by

(7)

where If:::: H ·H.
Another set of governing equations is needed for the vacuum and may be obtained

from eqns (2) by setting Jl :::: Ilo and 11 :::: 0 in eqns (3). All field variables in the vacuum
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will be denoted by a bar on the corresponding variables in the magneto-elastic medium.
Linearization is carried out on a small perturbation of a primary bias field HO due to the
electro-magnetic-mechanical interaction. e.g.

H(x.I) = HO+h(x.I). [(x. I) = O+e(x.t). J(X.I) = O+j(x.t). (8)

where the field quantities in lowercase letters are assumed to be small such that their
products can be neglected.

Consider a unit line force located in the perfectly conducting half-space.
r = o"<5(x-xO)J(:-:O)<5(I-r). and restrict ourselves to a case when the half-space is per­
meated by a normal magnetic field H = (0. O. H). One can present all fields under con­
sideration and the unit force in Fourier transformation form such that

I fX)° __ ;"'(1-') °w(x. x ,I) - 2 e v(x. x ,w) dw,
1t -'7::

I f'X) ,<5(I-r) = - e,,,I(t-'1 dw.
21t -'Xl

(9)

( 10)

Equations of motion (I) can then be written by using the linearized Maxwelrs equations
in the following form (Lee and Its. 1991):

( II )

where U" = [111.11)1" and the components of the operator L" are given .IS follows:

+ .. I D D
L 2 \ = L I2 = - -(A.+G)--.

p vx v:

( 12)

The perturbation of the c1ectro-mugnetic field in the half-space caused by elastic waves
from the source is related to elastic displacement as follows (Lee and Its. 1991):

VII"
!I" = H _-!.

I v: '
VII"

!I"l = - H _I ~., = iW1LHII",.. vx ' t
(13 )

In the vacuum (0 ~ : < - 00), the perturbation of the electro-magnetic lield pro­
pagating from the half-space satisfies the following equation:

( 14)

where

( 15)

Other components of the electro-magnetic field are connected with fi'j by the relations



1. S. LEE and E. N. Irs

(Vi'} efi';
c= = - ex . ( 16)

Boundary conditions (5) and (6) at == 0 can be rewritten as follows:

(
(1 111 (111';)

G -+-' =0.c= ('X

, ell';, CIII R
(.... +2G)-,-+ .... -,-= -JIH(Ir';-I';).

c= OX

(17)

We now wish to find a solution toeqns (11) and (14) which are subjected to the coupled
boundary conditions (17).

3. GREEN'S FUNCTION FOR MAGNETO-ELASTIC RAYLEIGH WAVES

By introducing a vector Gn = [III. 1I';.Ii,;]T. eqns (II) and (14) can be combined and
presented as

where the components of the operator

( 18)

o L~ )
( 19)

are defined by eqns (12) and (15). Due to the assumption of perfect conductivity. the olf­
diagonal terms connecting the two half-spaces in egn (19) arc rendered zero. The solutions
of (18) in two half-spaces, however, are coupled through the boundary conditions (17).

We now consider the Fourier transformation of Gn and J(x - xo) such that

I If. ."".Gn=_ yn( __O_),,-I'('-"d-
") -. - • <., ~ .,.
_1l: _.£

(20)

(21 )

As will be shown later y"(=, =0, ~) has singularities on the real axis ~; henceforth we will
consider (20) as a contour integral at the plane of complex ~. The contour of integration is
taken along the real axis ~ and around the poles along a semi-circle in the upper half-plane.
Inserting (20) and (21) into (18) and (17) results in a one-dimensional inhomogeneous
boundary value problem which can be described by the following equation:

(22)

where
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L II = - ~[ -(A+2G)~1+G :;1 +IlH1 (:=11 _~1)J.

L I1 = L 11 = - ~ [ -i~(A+G) :J.

and by the following boundary conditions at == 0:

lIn V1 = i~/I Vi II.

Z963

(23)

(24)

(25)

(26)

Taking into account that V.1 is defined for =< 0 while VI and V2 arc defined for => O.
one can introduce a scalar product in Hilbert space IHI E [V" V 2• V l ) .. as

(27)

With respect to the scalar product (27) one can show (sec Appendix) that the operator
constructed from the left-hand side of eqn (22) and boundury conditions (24)-(26) is
self-adjoint if k = 1l0/~ 2. therefore. the solution of (22)-(26) can be represented by the
superposition of the eigenfunctions from the corresponding homogeneous boundury value
problem (Titchmarsh. 1962) to our original problem (22)-(26) as the following:

(28)

where the functions iiZm correspond to a discrete spectrum of eigenvalues Wko and functions
ii::'(K. z) correspond to a continuous spectrum of eigenvalues K.

In Lee and Its (1992) it has been shown that the homogeneous boundary problem
under consideration has one discrete solution in a wide interval of variation of Il and H.
Here we consider a perfectly conducting material with a magnetic permeability for which
a discrete solution docs exist in a given original magnetic field. Then the solution describes
a magneto-elastic surface wave. similar to the purely clastic Rayleigh wave in an clastic
medium. and an electro-magnetic disturbance excited by the surface wave.

Let V(z) be a solution (corresponding to eigenvalue w1
) of the homogeneous equation

(29)

and boundary conditions (24)-(26). Then the solution of (22) can be written as
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(30)

where \'(K. =) are normalized eigenfunctions of continuous spectrum, The right-hand side
of eqn (22) can also be expressed as

(31 )

Multiplying (31) with \'(.:) and using the orthogonality of \'(.:) and V{K• .:) leads to the
relation

(32)

Since the source is located in the conducting half-space (.: ~ 0). we obtain another relation
as

(33)

where

(34)

Hence the cocflkient dn can be determined by

Inserting (30) into (22) leads to thc relation

(35)

Tuking into account (29) we can rewrite egn (35) as

or

Similarly we obtain

V-. (•. _II)n t-n ",.~-

Cn(K.': ) = -'(";)"'"''
K" .; -or

(36)

(31)

Finally. if we insert eqns (36). (37) into (30). substitute the resulting equation into (20).
and assume the double intcgml dccrenses as x -+ 00. we can present the discrete part of the
solution to egn (18) by

(38)
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Eigenfunction V(=) in the medium (= ~ 0) has the form (Lee and Its. 1991):

~965

(39)

where 2 and f3 are positive roots of the characteristic equation corresponding to (29).
Therefore, a pole

(40)

is the only singular point of the expression under integral (38) which can be evaluated using
the residue as

(41 )

Then the general solution of (1)-(7) in a perfectly conducting elastic half-space in a
transverse magnetic field subjected to a unit line force has the form

If'. ,n __ __ Jiwtt--c}" •W(X,X,I)-,- ( G(X,xlI.w)dw,
_1t _"

(42)

where the vector w consists of two cOlllponents of displacement in the medium and one
component of magnetic perturbation in the vaCUUlll.

4. INTEGRAL REPRESENTATION

Let us take into account a shift betwecn the vertical and horizontal components of
displacement and redefine Vas

(43)

Equation (29) can then be rewritten in terms of the functions VI' L' 2 and L' 3 in the form

and the boundary conditions (24)-(26) take the form

(
d/'l .)

G d;'- +~1'2 = O.

(44)

(45)

(46)

(47)

(48)

(49)

Multiplying eqns (44), (45) and (46) by pur. Pl'!. and (f:otl~/~2)uT respectively. integrating
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the resulting equations with respect to: from - 00 to 00, and taking into account the self­
adjointedness of L leads to the following relations:

(50)

where II -/4 are the so-called energy integrals of the Rayleigh wave in elastic media (Aki
and Richards, 1980) and are given by

II = i'" p[d +dl d:,

12 = i'" J.lV3 d:+ i'" ().+2G)vr d:,

Integrals Is-IQ have the form

fo , (dOI)2
l~ = -00 jlH- d: d:,

fo (dVl)2
IQ = _.r" Jlo d: d:.

(51 )

(52)

Let us now show that integrals Is -IQ can be interpreted as the corresponding energy
integrals of electromagnetic disturbances caused by the surface wave. Introducing

h =~ fX! h e-;~('<-'<O) dl'
I.., I .. ,

_71: _ X!

I fX! "( 0)h = - Ir e- I
, .<-.< dl'

l., l .. ,_71: _ 00
(53)
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one can rewrite the relations (13) and (16) as follows:

:!967

(54)

(55)

Using the relations (54) and (55), the integrals for electro-magnetic disturbances (52) can
be rewritten as

-2 fll fllW ~., :.,
-'21~=f.ll eid==f. ll c·d=,
~ -.) -"1:;

(56)

(57)

(58)

where vectors h = [iii' o. lid'", 6= [(,1,0./'\]'" and ~ = [0,e2,Or describe the electro­
magnetic disturbance in the conducting medium and vacuum respectively. Since the full
electro-magnetic energy is essentially all in the magnetic form in a perfect conductor
(Lindau and Lipshitz, 1960) «jj2/~ 2)/ I ~ represents the full electrical energy and

represents the full magnetic energy of all space under consideration. Relations (56)-(58)
reveal that I ~-l~ are indeed the energy integrals of electromagnetic disturbances caused by
the magneto-elastic interactions in a perfectly conducting medium. Overall ll-ly may be
called the energy integrals of magneto-elastic Rayleigh waves analogously to the purely
elastic case.

We have shown that the magneto-elastic energy integral (50) vanishes at its stationary
point for eigenfunctions of magneto-elastic Rayleigh waves similar to the case of the purely
clastic problem where the corresponding elastic energy integral (obtained from the explicit
Lagrangian) vanishes for eigenfunctions of elastic Rayleigh waves (Aki and Richards,
1980). This similarity delineates the additional advantage of using the single combined
operator L [see eqn (19)] which accounts for the whole space (i.e. the conducting half-space
and the vacuum), and introducing the scalar product (27) which is rendered self-adjoint
with respect to L: one has the opportunity not only to construct the solution to the
inhomogeneous equation (18) in the form of eqn (42), but also to get an energy relationship
for magneto-elastic Rayleigh waves by rewriting the corresponding homogeneous equation
(29) in integral form (50). This integral representation can be very useful for the solution
of the homogeneous equation (29) because it allows one to use variational techniques for
elastic media (e.g. Rayleigh-Ritz method) to determine the eigenfunctions of magneto­
elastic Rayleigh waves.

Moreover, in the problem under consideration, Green's function (41) can be rewritten
through the energy integrals (51 )-(52). For that purpose we differentiate eqns (44)-(46)
with respect to ~, multiply eqns (44). (45) and (46) by pvT, pt'!, (eoIl5/~2)vt respectively,
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and then integrate the resulting equations with respect to =from - ex; to 00. Noting that
the relation (50) is stationary in accordance with Hamilton's principle for a small variation
of eigenfunctions. we can present the result as follows:

(59)

Therefore. G•• eqn (41). can be rewritten as

(60)

In Its and Yanovskaya (1979) it has been shown that 2(,/2+/3 is proportional to the
average flux of elastic energy through a semi-infinite strip of unit width orthogonal to the
direction of propagation of Rayleigh waves for one period. A similar statement is valid
with respect to an electro-magnetic counterpart ~/6+(I/~)/7' Using (54) and (55) one can
show that

I f" I III=- S,d=+- .5I d=.
W II W -L

where 5, and 51 are the x-components of the Poynting vectors

S = e x h. S = ex fi

(61 )

(62)

in the medium and vacuum respectively. Therefore. one can conclude that ~/6+(I/~)/7

describes the flux of electro-magnetic energy through an infinite strip of unit width per­
pendicular to the direction of propagation of electro-magnetic disturbance caused by the
unit line force in the conducting elastic medium for a period.

The denominator in eqn (60) describes the flux of magneto-clastic energy for a cycle
of oscillation. Green's function in the form of eqn (60) can be used further for the solution
ofscattering problems in weakly inhomogeneous conductors as well as for the determination
of reflection and transmission coefficients of magneto-elastic Rayleigh waves across strong
inhomogeneities such as cracks or inclusions. Some solutions of these problems in purely
elastic media (Snieder. 1986; Its and Yanoskaya. 1979) have been obtained based on a
simple representation by normalizing eigenfunctions so that the flux elastic energy is equal
to unity. In that regard. eqn (60) may provide a more advantageous representation of
Green's function for solving problems ofscattering and refraction ofmagneto-elastic surface
waves.
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5. CONCLUSIONS
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Propagation of magneto-elastic Rayleigh waves from a unit line force in a perfectly
conducting elastic half-space in a magnetic field is considered in this paper. Green's function
of magneto-elastic Rayleigh waves is constructed by using the theory of spectral operators.
A unified self-adjoint operator for both the elastic and electro-magnetic disturbances is
introduced. The self-adjointedness of the operator is then invoked to construct the solution
of the inhomogeneous problem through the eigenfunctions of a corresponding homo­
geneous problem and to derive energy integrals of magneto-elastic Rayleigh waves similar
to the energy integrals known for the elastic waves. Relationships between the elastic and
electro-magnetic energy are discussed in some detail. The energy integral representation is
presented for the determination of the eigenfunctions of magneto-elastic Rayleigh waves in
which methods based on the variational principles can be employed. Because of the simple
analytical form, the Green's function constructed in the paper can be used further for
solution of different problems of refraction and scattering of magneto-elastic surface waves
in inhomogeneous media for possible application in the nondestructive evaluation of
advanced electromagnetic materials.
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APPE~DIX

(AI)

where the linear operator L is given by eqn (23). In accordance with the determination or the scalar product (:!7).
S can be rewrilten as follows:

Using integration by parts the above integral leads to L from vector V to V':

( dV d"·)JI<·-iW.+G)V,"!+(A.+2G) d/ "!-V, d/ "

where nonintegralterms can be rewritten taking into account the decrease in V for: .... ± 'Xi :

(
d VJ •.,. d"t)B, ". k d: Y J - VJ (1:"" (0),

Inserting (24) into (A4) leads to the relation:

Taking into account (25) one can rewrite the last relation as

(A2)

(A3)

(A4)

(AS)
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or

Finally. we take B = B ,+ B: by the use of eqn (26) as follows:

From the last expression in the above equation. B becomes identically zero when k = 110/1;2 or

Therefore. L is a self-adjoint operator with respect to the scalar product (27) provided that k - 110/1;2.
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(A6)

(A7)


